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Algebraic expressions are evaluated, from which the influence of small discrepancies between atomic 
positions in a structure model and the corresponding atomic sites in the observed structure on R 2 can be 
calculated. Theory and experiment are in good agreement. It is demonstrated that because of the effect of 
small positional errors, R 2 as a function of the size of a structure model does not necessarily show a 
monotonic decrease. The path of R 2 may even contain additional minima. 

Introduction 

The residual R 2 is defined as: 

R2 = [Z  ( I o -  I~)2l/Y.IZo • (1) 

Function values of R 2 can be enumerated prior to an 
actual structure analysis using intensity statistics 
(Lenstra, 1974). Wilson (1976) and Parthasarathy & 
Parthasarathi (1972, 1974) have demonstrated that, 
inter alia, the influence of anomalous dispersion, space 
group symmetry and even local symmetry additional to 
that of the space group can be taken into account. 

The impact of small discrepancies between atomic 
positions in the structure itself and the corresponding 
positions in the tentative structure model will be studied 
in this paper. 

Let the exact position be rj and the position found 
from a tentative electron density function be rj + Arj. In 
the original nomenclature of Wilson (1969) the atomic 
site is incorrect if (cos 2~r H.Arj )  =- 0, in which the 
angle brackets represent an averaging over all hkl  
values. If  an atomic site is correct this average is 1. 
Intermediate values will be found in the presence of 
small errors in atomic coordinates. 

In this paper the influence of one slightly misplaced 
atom is calculated for (in)complete structure models. 
For brevity we confine ourselves to the space groups P1 
and P1. 

Also, experimental values are enumerated using the 
experimental intensity data of ammonium hydrogen 
malate (Versichel, Van de Mieroop & Lenstra, 1978). 
A good fit between theory and experiment is found. The 
data also give evidence that the above used definition of 
an incorrect atomic position is necessary, but not 
sufficient. 

So far, theoretical calculations - taking into account 
the presence of unequal atoms in the structure, pseudo- 
symmetry, etc. - have indicated R 2 to have only one 
single minimum, viz for a complete and correct 

structure model. Wilson (1977) states that the proba- 
bility of, for example, false minima increases with the 
size of fluctuations in F, be it F o or F e In the last 
section we confine ourselves to fluctuations in F~ values 
only. It is demonstrated that positional errors (of the 
magnitude of the resolution of the Fourier function) can 
produce additional minima in the curvature of R 2 
versus the size of the structure model. 

R 2 index as a function of one slightly misplaced atom 

To calculate R 2 (1) is rewritten as: 

g 2 : ( ( I  o - Ic)2)/(12o) (2) 

in which the angle brackets represent the averaging 
over the complete set of available intensity data. 

(a) The space group P1 

The correct, observed structure factor F o can be 
written as: 

F o = F ,  exp itt + fn + 1 exp iO + F,, exp i g (3) 

in which F ,  is the structure amplitude of the known n- 
atom structure fragment, f ,  + 1 is the scattering power of 
the tentative atom added to this model. In an N-atom 
structure F u is the structure amplitude of the remaining, 
unknown ( N -  n - 1) atoms. 

Let the n-atom model be exactly correct; only a 
positional error is present in the location of the 
(n + 1)th atom. Then we find: 

F c = F ,  exp i~t + f , +  l exp i(O + A), (4) 

where the phase angle A is related to the positional 
error. Because I = FF*,  we obtain 

( t o  - Ic)  = F ~  
+ 2f.+ 1F.Icos (- - 0) - cos ( .  - O - A)I 
+ 2f .  + iFu cos ( t ~ -  X) + 2 F .  F u cos ( - -  X)" 
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In order to obtain R 2 the H-averaged value of ( I  o - Ic )2 

has to be calculated by averaging each of the factors in 
the expression for (Io - Ic) 2. Since 

(2 sin 2 a / 2 )  = ([cos (a - 0) - cos (a - 0 -  a)12> 

we find 

R 2 =  ((F4u) + 8<f2+l )<F2)<s in  2 d/2> 
2 2 4 + 2(f2+z><F2> + 2 ( F . > ( F , , > ) / ( F o > .  (5) 

If the tentative atom is located at its proper position 
(sin 2 (A/2)> = 0 then R 2 reduces to: 

2 2 4 R2 = (<V4> + 2(f2+l><r2> + 2 ( r . > ( r u ) ) / < r o ) .  

For an atom to be badly misplaced the phase angle A / 2  
has to change by at least zt radians [since the 
periodicity of sin 2 (A/2) is ~r radians; this is equivalent to 
Wilson's definition of an incorrect atomic site]. In this 
situation (sin 2 (A/2)) = ½ and (5) becomes: 

R 2 =  (<F4> + 4( f2+l><F~> 
2 4 + 2(f2.+l>(F2u> + 2 ( F 2 > ( F u > ) / ( F o > .  

The two given extremes of (5) are exactly equal to those 
derived by Lenstra (1974). 

(b) The  space group  P 

A small error in the position of one atom now also 
occurs in that of a second which is related to the trial 
atom by inversion symmetry. Analogous to the basic 
equations (3) and (4) we have 

F o = F .  + 2./'. +l COS 0 + F,, 

F e = F ,  + 2.I", + ~ cos (0 + A). 

It is easily found that the numerator of the R E index is 
given by: 

( ( I  o -- It) z) = 8(f4+~)<sin 2 A) 

+ 32( f2÷  ~)(F~)<sin 2 A / 2 )  

+ <ff4u> + 8<f2+l><Fu2> 

+ 4(F~>(F~) .  (6) 

In the case (sin2A) = (sinZ(A/2)) = ½ the added, 
symmetry-related atoms are badly misplaced and R 2 is 
given by: 

R2 = (4(f4.+1> + 16<f2.+~><V 2) + <Fu 4) 
2 4 + 8<fZ.+l><F2> + 4<F2.><Fu>)/(Fo>. 

When the two trial atoms are located at the correct 
positions (<sin 2 A> = (sin2(A/2)> = 0) the residual R z 
reduces to: 

2 2 4 = 4 F  r / r  R 2 ((F~> + 8<f.z+,>(F2> + < .>< .>) ( o>. 

Again the two extremes of (6) are exactly equal to the 
equations of Lenstra (1974). 

The residual R 2 c a n  be written in terms of a 
Patterson vector map, namely 

R 2 = f v (Po  - Pc)ZdV/ fvP2odV.  

In the expressions of R 2 in the space group P i  we have 
in addition to a term containing (sin 2 (A/2n> - -  as in 
P l  - ,  also a simple term with <sin 2 A>. In the nomen- 
clature of the Patterson functions the latter term is linked 
to the two single vectors between the two symmetry- 
related atoms. If  this atomic position is incorrect by Arj, 
the single vectors are incorrect by 2Ar t The inter- 
atomic vectors between the atoms not related by 
symmetry are incorrect by Ar s only. 

Experimental 

The previous theory is checked using the experimental 
intensity data and the refined structure of ammonium 
hydrogen malate (P21212 l, final R value - 0.026). 
Apart  from the hydrogen atoms the unit cell contains 4 
nitrogen, 16 carbon and 20 oxygen atoms. To simplify 
the calculations of the corresponding R 2 values we 
regarded the compound as an equal-atom structure. 
For a non-centrosymmetric, equal-atom s t r u c t u r e  R E 

decreases linearly with the number of atoms in the 
known structure fragment. This and the experimental 
R 2 values are illustrated in Fig. 1, showing the validity 
of our simplifying assumption. 

Since high-order reflections are more sensitive 
towards small errors in positional coordinates than the 
low-order reflections, we calculated R 2 values using two 
Oranges, namely 17 ° < 0 < 21.5 ° (setA) and 21.5 ° < 
0 < 24.9 o (set B). Both sets contain approximately 200 
independent reflections. As additional parameters we 
chose the size of the known structure fragment and the 
amount of  misplacement of the four symmetry-related 
atoms added to this fragment. Typical results are 
summarized in Table l, in which dR z is the increase of 
the g 2 value due to the misplacement of the added 
atoms. 
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Fig. 1. The straight line represents the theoretical curve of R 2. The 
dots give the experimental R z values for ammonium hydrogen 
malate. The dashed line represents the general path of experimen- 
tal R 2 values near the end of a structure analysis. 
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Table 1. Theoretical and experimental values o f  AR 2 
f o r  sets A and B o f  ammonium hydrogen malate (see 

text) 

N is the number of correctly placed atoms in the known structure 
fragment. The error E in atomic position is given in A. 

100 x A R  2 

Set A Set B 

E Theory Experiment Theory Experiment N 

0.040 0-05 0-05 0.07 0.25 4 
0.076 0.20 0.25 0-29 0.75 4 
0.114 0.44 0.50 0.64 1.40 4 
0.153 0.76 0.85 1.15 2.05 4 
0.190 1.14 1-30 1-79 2.55 4 
0-230 1.57 1- 70 2-58 3-05 4 

0.040 0-10 0-10 0-50 0.30 8 
0.076 0.50 0.35 1.50 1.05 8 
0.114 1.10 0-75 2.80 2-10 8 
0.153 1.70 1.30 4.10 3.25 8 
0-190 2.60 1.95 5.10 4.35 8 
0.230 3-40 2-65 6.10 5.45 8 

0.076 1.00 1.80 1-10 1.80 16 
0.153 4.00 5.00 4.00 4.70 16 
0.230 8.00 8.60 8-10 7.90 16 

The values of AR 2 show that the present theory is 
very satisfactory. Indeed, high-order reflections show 
larger AR 2 values than low-order reflections for the 
same misplacement. 

Wilson's formulation of a badly misplaced atom is 
correct for one single isolated atom. However, it is 
insufficient to reveal the consequences of a structure 
fragment being known already. The presence of such an 
influence is clearly seen in Table 1. AR 2 for a positional 
error of 0.23 A increases from 0.016 to 0.080 when 
the known structure fragment increases from 4 to 16 
atoms. 

From equation (5) it can be seen that the larger the 
known fragment, the larger AR 2 for a given mis- 
placement will be. This can be easily illustrated in the 
Patterson function. When an atom is added to an n- 
atom model 2n vectors (not coinciding with the original 
maximum) must be accounted for. So the larger the 
known structure fragment is, the more R 2 will react to 
small misplacements in the added atoms. 

This sensitivity of R z towards positional errors is met 
in the behaviour of the experimental R 2 values (see Fig. 
1; dashed line). A quantitative explanation cannot be 
provided, because fluctuations on I o and other defects 
were not taken into account. 

Additional information and conclusions 

If in the structure model all atoms contain small 
positional errors, R 2 will be well above its ideal value. 
Upon addition of an extra slightly misplaced atom one 

might be confronted with an increase in R 2 rather than 
with the expected decrease. 

A mathematical formulation of this idea is as 
complex as describing a Patterson vector map in terms 
of correlated, but incorrect interatomic functions. A 
simple example will prove our point. Suppose we 
translate the refined atomic positions in ammonium 
hydrogen malate by 0-23 A, in the x direction. Such a 
shift is of the same magnitude as the normal grid 
distance used in the Fourier calculation in view of hma x. 

Moreover, this displacement is less than an atomic 
diameter, and so these positions are refinable in terms 
of least-squares procedures (Lipson & Cochran, 1953). 
The behaviour of R 2 for the original model and for the 
shifted one are listed in Table 2 for the first 20 atoms 
only, underlining the correctness of our previous 
statement. It even shows the presence of an additional 
minimum in the path of R 2 versus the number of atoms 
in the structure model. 

Table 2. R2 f o r  a correct model  (,4) and a structure 
model with small  errors on the x coordinate only (B) 

All structure factors in the range 0 < 0 < 30 ° are used in the R 2 
calculation. 

Number of Error on 
atoms in the x coordinate 

structure model A B (A) 

4 0-893 0.894 +0-23 
8 0.779 0.805 -0-23 

12 0.650 0.701 +0-23 
16 0-619 0-733 +0-23 
20 0-449 0-728 0-23 
24 0.354 0.570 +0-23 
28 0-215 0.443 +0.23 

In automated structure analysis we use as a criterion 
(Lenstra, 1974) for the correctness of an atomic 
position: [R2(new ) - R2(original)]< 0. 

Apparently this criterion does not always hold, 
especially not with high-order reflections. Fortunately, 
in automated structure analysis the experimental AR 2 
values are not as sensitive for positional errors as Table 
I might suggest, because the lowest-order reflections 
cause a serious damping in the calculated AR 2. 

In view of this an automated structure analysis based 
on R 2 criteria must use refined peak coordinates rather 
than the coordinates of the grid point with the highest 
electron density. In addition, in an iterative process of 
Fourier calculation the atomic coordinates of the 
already accepted atoms should be replaced by the co- 
ordinates of their refined maxima. So one avoids as 
much as possible a cumulation of errors in positional 
coordinates. Thus the chances of wrongly rejecting a 
slightly misplaced atomic position using the above 
mentioned criterion are minimized. 
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On the Application of Phase Relationships to Complex Structures. 
XIV.* The Additional Use of Statistical Information in Tangent-Formula Refinement 
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Suitable weighting schemes for use in tangent-formula phase development and refinement are discussed, and a 
statistically based weighting scheme, which can easily be incorporated in existing computer programs, is 
proposed. Examples of the use of this method in structure solution and completion are presented for a 
previously unknown structure and for several structures which had been difficult to solve by other methods. 
In addition a method is given for subtracting the contribution of heavy atoms from observed I EI values on a 
statistical basis which is very useful when the presence of such atoms leads to problems in defining the 
enantiomorph. These methods add greatly to the power of the MUL TAN computer program. 

Introduction 

The multisolution method of phase determination using 
convergence mapping and the tangent formula as 
embodied in computer programs such as M U L T A N  
(Main, 1978) and S H E L X  (Sheldrick, 1976) has been 
very successful in solving both centrosymmetric and 
noncentrosymmetric crystal structures containing up to 
70 or 80 atoms in the asymmetric unit. Sometimes, 
however, these programs fail to yield any interpretable 
molecular fragments. The fact that there exist certain 
structures which are impossible to solve using the 
simple tangent formula is well known (see, for example, 
Lessinger, 1976). A common symptom of this in- 
adequacy in the tangent formula is the tendency for the 
definition of the enantiomorph to be lost, or indeed 
never to be defined properly. This may lead either to a 
trivial solution containing both enantiomorphs or to a 
'uranium-type' E map with one large peak and little 
else. Schenk (1972) has divided the problems caused by 
enantiomorph definition into two classes. Our ex- 
perience with M U L T A N  is that such structures are 
difficult to solve for one of the following reasons. 

(1) The enantiomorph is initially defined but upon 
phase extension or refinement is lost; for example, 3- 
chloro- 1,3,4-triphenylazetidin-2-one (AZET) (C 21H t6Cl- 

* Part XIII: Hull (1978). 

NO, Pca2,  Z = 8) (Colens, Declercq, Germain, 
Putzeys & Van Meerssche, 1974). 

(2) Light-atom structures in space groups such as 
C2, P2~, or P1 where it is often difficult to define 
the enantiomorph; for example, prostaglandin E 2 
(C20H3205, P1, Z = 1) (Edmonds & Duax, 1974a,b). 

(3) Structures containing one heavy atom where the 
squaring effect of the tangent formula leads to a trivial 
solution with associated symmetry about the heavy- 
atom position; for example, the K salt of alborixin 
(ALB) (C4sHs3OI-4.K +, P2~, Z = 2) (Allbaume, 
Busetta, Farges, Gachon, Kergomard & Staron, 1975). 

Only in the second of these categories is the enantio- 
morph not well defined at the start of phase deter- 
mination: for structures in this group there exist several 
methods making use of enantiomorph-discriminating 
triple-phase invariants or quartets (Duax & Hauptman, 
1972; Busetta, 1976) or enantiomorph-sensitive quar- 
tets (Gilmore, 1977), which have met with limited 
SUCCESS. 

Groups (1) and (3) consist mainly of structures for 
which the tangent formula is unstable even when the 
correct phases are used (Lessinger, 1976). This lack of 
stability appears to be linked to the fact that in normal 
tangent refinement no explicit use is made of the cosine 
invariant information or of Sayre's (1952) equation. 
The next two sections of this paper outline the develop- 
ment of a simple statistical weighting scheme for 


